Thicker eggshells are not predicted by host egg ejection behaviour in four species of Australian cuckoo

Author:

Holleley Clare E.ORCID,Grieve Alice C.ORCID,Grealy AliciaORCID,Medina IlianaORCID,Langmore Naomi E.ORCID

Abstract

AbstractDefences of hosts against brood parasitic cuckoos include detection and ejection of cuckoo eggs from the nest. Ejection behaviour often involves puncturing the cuckoo egg, which is predicted to drive the evolution of thicker eggshells in cuckoos that parasitise such hosts. Here we test this prediction in four Australian cuckoo species and their hosts, using Hall-effect magnetic-inference to directly estimate eggshell thickness in parasitised clutches. In Australia, hosts that build cup-shaped nests are generally adept at ejecting cuckoo eggs, whereas hosts that build dome-shaped nests mostly accept foreign eggs. We analysed two datasets: a small sample of hosts with known egg ejection rates and a broader sample of hosts where egg ejection behaviour was inferred based on nest type (dome or cup). Contrary to predictions, cuckoos that exploit dome-nesting hosts (acceptor hosts) had significantly thicker eggshells relative to their hosts than cuckoos that exploit cup-nesting hosts (ejector hosts). No difference in eggshell thicknesses was observed in the smaller sample of hosts with known egg ejection rates, probably due to lack of power. Overall cuckoo eggshell thickness did not deviate from the expected avian relationship between eggshell thickness and egg length estimated from 74 bird species. Our results do not support the hypothesis that thicker eggshells have evolved in response to host ejection behaviour in Australian cuckoos, but are consistent with the hypothesis that thicker eggshells have evolved to reduce the risk of breakage when eggs are dropped into dome nests.

Funder

Australian Research Council

Commonwealth Scientific and Industrial Research Organisation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3