Mathematical modelling of a single tethered aerostat using longitudinal stability derivatives

Author:

Sasidharan Anoop,Velamati Ratna Kishore,Mohammad Akram,Benaissa Sabrina

Abstract

AbstractLighter-than-air (LTA) aerial vehicles such as airships and aerostats can be found in various strategic and commercial applications, primarily due to their capability to hover and stealth. The mathematical model of these vehicles helps in understanding their complex dynamics and designing and developing proper stabilisation systems for them. Stability derivatives have been used for developing mathematical models for heavier-than-air aerial vehicles since their introduction. This paper presents a methodology to develop a mathematical model of an aerostat based on stability derivatives. One of the major contributions of this study is the estimation of aerostat’s added mass terms expressed as longitudinal stability derivatives due to acceleration of the longitudinal motion variables. A longitudinally decoupled linear mathematical model of a single-tethered aerostat using stability derivatives is investigated in this study. A computational fluid dynamics (CFD)-based analysis of the 3D model of the vehicle is used to obtain the stability derivatives. The methodology presented considers the aerostat and tether models separately before coupling them to create the full model. The stability derivative analysis is carried out using ANSYS Fluent, and the coupled tethered aerostat model is investigated using MATLAB 2020. The negative pitch angle of the aerostat is caused by the selection of the pitching centre as the aerostat centre of volume instead of the tether confluence point. The tension force on the tether, which is proportional to the wind velocity, and aerostat velocity components are found to be stabilised within 200–400 s.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3