A model-specific simplification of the Mouse Grimace Scale based on the pain response of intraperitoneal CCl4 injections

Author:

Ernst Lisa,Bruch Stefan,Kopaczka Marcin,Merhof Dorit,Bleich André,Tolba René H.,Talbot Steven R.

Abstract

AbstractDespite its long establishment and applicability in mice pain detection, the Mouse Grimace Scale still seems to be underused in acute pain detection during chronic experiments. However, broadening its applicability can identify possible refinement approaches such as cumulative severity and habituation to painful stimuli. Therefore, this study focuses on two main aspects: First, five composite MGS criteria were evaluated with two independent methods (the MoBPs algorithm and a penalized least squares regression) and ranked for their relative importance. The most important variable was used in a second analysis to specifically evaluate the context of pain after an i.p. injection (intervention) in two treatment groups (CCl4 and oil (control)) at fixed times throughout four weeks in 24 male C57BL/6 N mice. One hour before and after each intervention, video recordings were taken, and the MGS assessment was performed. In this study, the results indicate orbital tightening as the most important criterion. In this experimental setup, a highly significant difference after treatment between week 0 and 1 was found in the CCl4 group, resulting in a medium-sized effect (W = 62.5, p value < 0.0001, rCCl4 = 0.64). The oil group showed no significant difference (week 0 vs 1, W = 291.5, p value = 0.7875, rcontrol = 0.04). Therefore, the study showed that the pain caused by i.p. injections was only dependent on the applied substance, and no significant cumulation or habituation occurred due to the intervention. Further, the results indicated that the MGS system can be simplified.

Funder

Deutsche Forschungsgemeinschaft

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3