Author:
Stoltnow Malte,Weis Philipp,Korges Maximilian
Abstract
AbstractOre precipitation in porphyry copper systems is generally characterized by metal zoning (Cu–Mo to Zn–Pb–Ag), which is suggested to be variably related to solubility decreases during fluid cooling, fluid-rock interactions, partitioning during fluid phase separation and mixing with external fluids. Here, we present new advances of a numerical process model by considering published constraints on the temperature- and salinity-dependent solubility of Cu, Pb and Zn in the ore fluid. We quantitatively investigate the roles of vapor-brine separation, halite saturation, initial metal contents, fluid mixing and remobilization as first-order controls of the physical hydrology on ore formation. The results show that the magmatic vapor and brine phases ascend with different residence times but as miscible fluid mixtures, with salinity increases generating metal-undersaturated bulk fluids. The release rates of magmatic fluids affect the location of the thermohaline fronts, leading to contrasting mechanisms for ore precipitation: higher rates result in halite saturation without significant metal zoning, lower rates produce zoned ore shells due to mixing with meteoric water. Varying metal contents can affect the order of the final metal precipitation sequence. Redissolution of precipitated metals results in zoned ore shell patterns in more peripheral locations and also decouples halite saturation from ore precipitation.
Funder
Deutsche Forschungsgemeinschaft,Germany
Universität Potsdam
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献