Performance of hybrid Innegra-carbon fiber composites

Author:

Vaidya Uday,Thattaiparthasarthy Balaji,Janney Mark,Mauhar Mark,Graham Keith,Cates Elizabeth

Abstract

AbstractIn this work material synergy with high stiffness carbon fiber with ductile high strength polypropylene fiber (Innegra S), (referred to as Innegra, herein) have been evaluated in a range of laminate designs. Both woven and discontinuous carbon fiber have been considered. The discontinuous fibers are based on three-dimensional deposition (3DEP) (referred to as 3DEP, herein) carbon fiber preform process. Eleven (11) variants of Innegra-carbon fiber hybrid laminates were investigated for tensile, flexure, compression, in-plane shear and low velocity impact response. The effect of position of Innegra within the laminate was studied and found to influence strength and stiffness properties. In terms of overall trends, Innegra provides upward of 18% improvement in strain (ductility) to the composite and eliminates brittle fracture of carbon fiber. The moduli trends follow the proportionality of Innegra fiber to carbon fiber plies. However, the strength is controlled by the interface between Innegra and carbon fiber. The primary failure mode in tension and compression is via onset of debonding between Innegra and carbon fiber. The 3DEP carbon fiber constituents provided highest values of in-plane shear indicating that three-dimensional (3D) network of carbon fiber provides higher shear resistance. The Innegra intensive variants exhibited superior energy absorption under low velocity impact, at energy levels 15–60 J. This work provides insight for designers to incorporate Innegra and carbon fiber hybrids in composite structures.

Funder

U.S. Department of Energy

Defense Logistics Agency

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference22 articles.

1. The Nielsen Company, Innegra hybrid carbon boosts frame's durability. Bicycle Retailer and Industry News, 26(3) (2017).

2. BGF. Innegra team to produce Aerialite® X composite. Text. World 163(6), 20 (2013).

3. Reinforced Plastics, 63(5), 22 (2019).

4. Patzin, Natalie Genevieve, Composite panel impact testing for the down-selection of material for use in the outer shell of football helmets. Clemson University, ProQuest Dissertations Publishing (2014).

5. Huang, J. Crash resistance carbon fiber, Cyclitech 2016. Plast. Eng. 73, 28–32 (2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3