Nonlinear vibration of a buckled/damaged BNC nanobeam transversally impacted by a high-speed C60

Author:

Shi Jiao,Yang Likui,Shen Jianhu,Cai Kun

Abstract

AbstractNanotube can be used as a mass sensor. To design a mass sensor for evaluating a high-speed nanoparticle, in this study, we investigated the impact vibration of a cantilever nanobeam being transversally collided by a high-speed C60 at the beam's free end with an incident velocity of vIn. The capped beam contains alternately two boron nitride zones and two carbon zones on its cross section. Hence, the relaxed beam has elliptic cross section. The vibration properties were demonstrated by molecular dynamics simulation results. Beat vibration of a slim beam can be found easily. The 1st and the 2nd order natural frequencies (f1 and f2) of the beam illustrate the vibration of beam along the short and the long axes of its elliptic cross section, respectively. f2 decreases with increasing temperature. A minimal value of vIn leads to the local buckling of the beam, and a different minimal vIn leading to damage of the beam. For the same system at a specified temperature, f2 varies with vIn. When the beam bends almost uniformly, f2 decreases linearly with vIn. If vIn becomes higher, the beam has a cross section which buckles locally, and the buckling position varies during vibration. If vIn approaches the damage velocity, a fixed contraflexture point may appear on the beam due to its strong buckling. Above the damage velocity, f2 decreases sharply. These results have a potential application in design of a mass sensor.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3