4-chlorophenol removal by air lift packed bed bioreactor and its modeling by kinetics and numerical model (artificial neural network)

Author:

Azizi Elahe,Abbasi Fariba,Baghapour Mohammad Ali,Shirdareh Mohammad Reza,Shooshtarian Mohammad Reza

Abstract

Abstract4-chlorophenol (4-CP) is a hazardous contaminant that is hardly removed by some technologies. This study investigated the biodegradation, and physical 4-CP removal by a mixed microbial consortium in the Airlift packed bed bioreactor (ALPBB) and modeling by an artificial neural network (ANN) for first the time. The removal efficiency of ALPBB was investigated at 4-CP(1-1000 mg/L) and hydraulic retention time (HRT)(6-96 hr) by HPLC. The results showed that removal efficiency decreased from 85 at 1 to 0.03% at 1000 mg/L, with increasing 4-CP concentration and HRT decreasing. BOD5/COD increased with increasing exposure time and concentration decreasing, from 0.05 at 1000 to 0.96 at 1 mg/L. With time increasing, the correlation between COD and 4-CP removal increased (R2 = 0.5, HRT = 96 h). There was a positive correlation between the removal of 4-CP and SCOD by curve fitting was R2 = 0.93 and 0.96, respectively. Moreover, the kinetics of 4-CP removal follows the first-order and pseudo-first-order equation at 1 mg/L and other concentrations, respectively. 4-CP removal modeling has shown that the 2:3:1 and 2:4:1 were the best structures (MSE: physical = 0.126 and biological = 0.9)(R2allphysical = 0.999 and R2testphysical = 0.999) and (R2allbiological = 0.71, and R2testbiological = 0.997) for 4-CP removal. Also, the output obtained by the ANN prediction of 4-CP was correlated to the actual data (R2physical = 0.9997 and R2biological = 0.59). Based on the results, ALPBB with up-flow submerged aeration is a suitable option for the lower concentration of 4-CP, but it had less efficiency at high concentrations. So, physical removal of 4-CP was predominant in biological treatment. Therefore, the modification of this reactor for 4-CP removal is suggested at high concentrations.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3