Population diversity control based differential evolution algorithm using fuzzy system for noisy multi-objective optimization problems

Author:

Subburaj Brindha,Maheswari J. Uma,Ibrahim S. P. Syed,Kavitha Muthu Subash

Abstract

AbstractThe objective measurements of the real-world optimization problems are mostly subject to noise which occurs due to several reasons like human measurement or environmental factors. The performance of the optimization algorithm gets affected if the effect of noise is higher than the negligible limit. The previous noise handling optimization algorithms use a large population size or multiple sampling at same region which increases the total count of function evaluations, and few methods work for a particular problem type. To address the above challenges, a Differential Evolution based Noise handling Optimization algorithm (NDE) to solve and optimize noisy bi-objective optimization problems is proposed. NDE is a Differential Evolution (DE) based optimization algorithm where the strategies for trial vector generation and the control parameters of DE algorithm are self-adapted using fuzzy inference system to improve the population diversity along the evolution process. In NDE, explicit averaging based method for denoising is used when the noise level is higher than negligible limit. Extending noise handling method enhances the performance of the optimization algorithm in solving real world optimization problems. To improve the convergence characteristics of the proposed algorithm, a restricted local search procedure is proposed. The performance of NDE algorithm is experimented using DTLZ and WFG problems, which are benchmark bi-objective optimization problems. The obtained results are compared with other SOTA algorithm using modified Inverted Generational Distance and Hypervolume performance metrics, from which it is confirmed that the proposed NDE algorithm is better in solving noisy bi-objective problems when compared to the other methods. To further strengthen the claim, statistical tests are conducted using the Wilcoxon and Friedman rank tests, and the proposed NDE algorithm shows significance over the other algorithms rejecting the null hypothesis.

Funder

Vellore Institute of Technology, Chennai

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3