Broadband absorption using all-graphene grating-coupled nanoparticles on a reflector

Author:

Raad Shiva Hayati,Atlasbaf Zahra,Zapata-Rodríguez Carlos J.

Abstract

Abstract In this paper, the hybridized localized surface plasmon resonances (LSPRs) of a periodic assembly of graphene-wrapped nanoparticles are used to design a nanoparticle assisted optical absorber. Bandwidth enhancement of this structure via providing multiple types of plasmonic resonances in the associated unit cell using two densely packed crossly stacked graphene strips is proposed. The designed graphene strips support fundamental propagating surface plasmons on the ribbons, and gap plasmons in the cavity constructed by the adjacent sections. Graphene strips exhibit a hyperbolic dispersion region in the operating spectrum and assist in the bandwidth enhancement. Moreover, since the nanoparticles are deposited on the top strips, real-time biasing of them can be easily conducted by exciting the surface plasmons of the strip without the necessity to electrically connect the adjacent nanoparticles. The overall dynamic bandwidth of the structure, using a two-state biasing scheme, covers the frequencies of 18.16–40.47 THz with 90% efficiency. Due to the symmetry of the structure, the device performs similarly for both transverse electric (TE) and transverse magnetic (TM) waves and it has a high broadband absorption rate regarding different incident angles up to 40°. Due to the presence of 2D graphene material and also using hollow spherical particles, our proposed absorber is also lightweight and it is suitable for novel compact optoelectronic devices due to its sub-wavelength dimensions.

Funder

Iran National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3