Identification of influential parameters and conditions in heavy metals adsorption onto Cal-LDH-PC using optimization approaches of RSM and Taguchi

Author:

Mohrazi Ava,Ghasemi-Fasaei Reza,Mojiri Amin,Safarzadeh Sedigheh

Abstract

AbstractAdsorption process plays an important role in the remediation of heavy metals (HMs) from wastewater. A laboratory trial was conducted to investigate effective parameters for improving the bio-adsorption removal of HMs. SEM, EDX, BET, and FTIR techniques were applied to characterize the calcined layer double hydroxide (Cal-LDH), pectin (PC), and Cal-LDH-PC composite prepared from Licorice pomace. The adsorption of zinc (Zn) cadmium, nickel (Ni) and lead (Pb) onto the most efficient sorbent was investigated using RSM methodology with operational factors such as concentration, reaction time, sorbent dose, and pH. The results related to FTIR showed that Cal-LDH-PC had the highest number of functional groups. Based on the SEM results Cal-LDH had a low surface area (9.36 m2 g-1) and a small pore size (9.22 nm). After the modification process (Cal-LDH-PC), the values of surface area and pore size increased by 13-fold (120 m2 g-1) and 1.5-fold (18 nm), respectively. Cal-LDH had high adsorption performance, more cavities, stability, various functional groups, and excessive carbon and oxygen content, which make it efficient and powerful in removing HMs from wastewater. The optimal condition for achieving the removal efficiency (RE%) values of metals was determined to be 80.79 mg L−1, 100 min, 0.167 g L−1, and 9 for concentration, reaction time, sorbent dose, and pH, respectively. Maximum adsorption capacity and RE (%) were 300 mg g−1 and 99% for Zn. According to the results concentration had a major impact on RE% (except for Ni), while for Ni, adsorbent dose had the most significant impact. The present study introduced Cal-LDH-PC prepared from Licorice pomace as a capable, useful and economical sorbent for HMs removal from polluted environments. Taguchi's statistical method is distinguished as an economic method with easier interpretation, while the RSM approach is more accurate, and it can also check the interaction of parameters.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3