Towards visible light driven photoelectrocatalysis for water treatment: Application of a FTO/BiVO4/Ag2S heterojunction anode for the removal of emerging pharmaceutical pollutants

Author:

Orimolade Benjamin O.,Arotiba Omotayo A.

Abstract

AbstractPharmaceuticals have been classified as emerging water pollutants which are recalcitrant in nature. In the quest to find a suitable technique in removing them from contaminated water, photoelectrocatalytic oxidation method has attracted much attention in recent years. This report examined the feasibility of degrading ciprofloxacin and sulfamethoxazole through photoelectrocatalytic oxidation using FTO-BiVO4/Ag2S with p-n heterojunction as anode. BiVO4/Ag2S was prepared through electrodeposition and successive ionic layer adsorption/reaction on FTO glass. Structural and morphological studies using XRD, SEM, EDS and diffusive reflectance UV-Vis confirmed the successful construction of p-n heterojunction of BiVO4/Ag2S. Electrochemical techniques were used to investigate enhanced charge separation in the binary electrode. The FTO-BiVO4/Ag2S electrode exhibited the highest photocurrent response (1.194 mA/cm−2) and longest electron lifetime (0.40 ms) than both pristine BiVO4 and Ag2S electrodes which confirmed the reduction in recombination of charge carriers in the electrode. Upon application of the prepared FTO-BiVO4/Ag2S in photoelectrocatalytic removal of ciprofloxacin and sulfamethoxazole, percentage removal of 80% and 86% were achieved respectively with a low bias potential of 1.2 V (vs Ag/AgCl) within 120 min. The electrode possesses good stability and reusability. The results obtained revealed BiVO4/Ag2S as a suitable photoanode for removing recalcitrant pharmaceutical molecules in water.

Funder

National Research Foundation, South Africa

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3