Effects of Oxygen Modification on the Structural and Magnetic Properties of Highly Epitaxial La0.7Sr0.3MnO3 (LSMO) thin films

Author:

Kumari Shalini,Mottaghi NavidORCID,Huang Chih-Yeh,Trappen RobbynORCID,Bhandari Ghadendra,Yousefi Saeed,Cabrera Guerau,Seehra Mohindar S.,Holcomb Mikel B.ORCID

Abstract

AbstractLa0.7Sr0.3MnO3, a strong semi-metallic ferromagnet having robust spin polarization and magnetic transition temperature (TC) well above 300 K, has attracted significant attention as a possible candidate for a wide range of memory, spintronic, and multifunctional devices. Since varying the oxygen partial pressure during growth is likely to change the structural and other physical functionalities of La0.7Sr0.3MnO3 (LSMO) films, here we report detailed investigations on structure, along with magnetic behavior of LSMO films with same thickness (~30 nm) but synthesized at various oxygen partial pressures: 10, 30, 50, 100, 150, 200 and 250 mTorr. The observation of only (00l) reflections without any secondary peaks in the XRD patterns confirms the high-quality synthesis of the above-mentioned films. Surface morphology of the films reveals that these films are very smooth with low roughness, the thin films synthesized at 150 mTorr having the lowest average roughness. The increasing of magnetic TC and sharpness of the magnetic phase transitions with increasing oxygen growth pressure suggests that by decreasing the oxygen growth pressure leads to oxygen deficiencies in grown films which induce oxygen inhomogeneity. Thin films grown at 150 mTorr exhibits the highest magnetization with TC = 340 K as these thin films possess the lowest roughness and might exhibit lowest oxygen vacancies and defects. Interpretation and significance of these results in the 30 nm LSMO thin films prepared at different oxygen growth pressures are also presented, along with the existence and growth pressure dependence of negative remanent magnetization (NRM) of the above-mentioned thin films.

Funder

U.S. Department of Energy

NSF | Directorate for Mathematical & Physical Sciences | Division of Materials Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3