Quantitative analysis of internal components of the human crystalline lens during accommodation in adults

Author:

Xiang Yan,Fu Ting,Xu Qiongfang,Chen Wei,Chen Zhiqi,Guo Jinming,Deng Chaohua,Manyande Anne,Wang Ping,Zhang Hong,Tian Xuebi,Wang Junming

Abstract

AbstractTo quantitatively analyze changes in the inner components of the human crystalline lens during accommodation in adults. Eyes of 23 subjects were sequentially examined using CASIA2 Optical Coherence Tomography under 0D, − 3D and − 6D accommodation states. The anterior chamber depth (ACD), anterior and posterior crystalline lens radius of the curvature (ALRC and PLRC) were obtained using built-in software. The lens thickness (LT), lenticular nucleus thickness (NT), anterior cortex thickness (ACT), posterior cortex thickness (PCT), anterior and posterior lenticular nucleus radius of the curvature (ANRC and PNRC), anterior and posterior lenticular nucleus vertex (ANV and PNV) were quantified manually with the Image-pro plus software. During accommodation, the ACD became significantly shallower and LT significantly increased. For changes in the lens, the ALRC decreased by an average magnitude (related to accommodative stimuli) 0.44 mm/D, and PLRC decreased 0.09 mm/D. There was no difference for the ACT and PCT in different accommodation states. For lenticular nucleus response, NT increased on average by 30 μm/D. Both the ANRC and PNRC decreased on average by 212 μm/D and 115 μm/D respectively. The ANV moved forward on average by 0.07 mm under − 3D accommodative stimuli and 0.16 mm for − 6D. However, there was no statistically significant difference between different accommodation states in the PNV movement. Under accommodation stimulation, lens thickness changed mainly due to the lenticular nucleus, but not the cortex. For the lenticular nucleus, both the ANRC and PNRC decreased and ANRC changed the most. The anterior surface of the nucleus moved forward while the posterior surface of the nucleus moved backward but only slightly.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3