Entangled states shaping with CV states of definite parity

Author:

Kuts Dmitry A.,Podoshvedov Sergey A.

Abstract

AbstractWe present a new method to entangle continuous variable (CV) states of certain parity and photonic states for the purpose of generating optical hybrid cluster (HC) states. To do it we introduce two families of the CV states of definite parity which stems from single mode squeezed vacuum (SMSV) state. Potential to apply the CV states of certain parity is high. We report on the generation of the even/odd Schrödinger cat state like (SCS-like) states whose fidelities with even/odd SCS of amplitude of $$4.2$$ 4.2 are more of $$0.99$$ 0.99 , when 30,31 photons are detected in auxiliary mode of input SMSV state initially mixed with single photon. We show that the quantum efficiency of a photon number resolving (PNR) detector is crucial to maintaining the success rate of even/odd SCSs generator at an acceptable level. The scheme with delocalized photon implements deterministic imperfect entanglement operation between macro and micro states. We show that the beam splitter implements the two-qubits operation $$control-Z$$ c o n t r o l - Z (CZ) for input CV states of definite parity and photonic states, provided that certain result is detected in measurement mode. An extension of the entangling operation for two entangled delocalized photons (TEDP) allows one to realize three-qubit HC state. Seven-qubit HC state is the result of conjunction of two three-qubit HC states through TEDP state.

Funder

Russian Foundation for Basic Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3