Time series forecasting methods in emergency contexts

Author:

Villoria Hernandez P.ORCID,Mariñas-Collado I.ORCID,Garcia Sipols A.ORCID,Simon de Blas C.ORCID,Rodriguez Sánchez M. C.ORCID

Abstract

AbstractThe key issues in any fire emergency are recognising fire hotspots, locating the emergency intervention team (EI), following the evolution of the fire, and selecting the evacuation path. This leads to the study and development of HelpResponder, a solution capable of detecting the focus of interest in hostile spaces derived from fire due to high temperatures without visibility. A study is conducted to determine which model best predicts measured $$\text {CO}_2$$ CO 2 levels. The variables used are temperature, humidity, and air quality, obtained from sensors installed in a fire tower. The statistical methods applied, namely ARIMAX, KNN, SVM, and TBATS, allow the adjustment and modelling of the variables. Explanatory variables with temporal structure are incorporated into SVM, a new improvement proposal. Moreover, combining different models showed the best efficiency in forecasting. In fact, another contribution of our work lies in offering a small-scale prediction system that is specifically designed to save batteries. The system has been tested and validated in a hostile environment (building), simulating real emergency situations. The system has been tested and validated in several hostile environments, simulating real emergency situations. It can help firefighters respond faster in an emergency. This reduces the risks associated with the lack of information and improves the time for tactical operations, which could save lives.

Funder

Comunidad de Madrid

Ministerio de Industria, Energía y Turismo

Agencia Estatal de Investigación

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference31 articles.

1. Transforming our world: the 2030 Agenda for Sustainable Development | Department of Economic and Social Affairs. (n.d.). https://sdgs.un.org/2030agenda.

2. EUROSTAT. Statistics on european cities. https://ec.europa.eu/eurostat/statistics-explained/index.php? (2021).

3. European Commission, Directorate-General for Research and Innovation. Final report of the High-Level Panel of the European Decarbonisation Pathways Initiative. https://data.europa.eu/doi/10.2777/636 (Publications Office, 2018).

4. Fundación Mapfre. Estudio de víctimas de incendios en españa en 2019. https://www.fundacionmapfre.org/media/educacion-divulgacion/prevencion/incendios/informe-victimas-incendios-espana-2018.pdf (2019).

5. Fahy, R. F. & Molis, J. Firefighter Fatalities in the United States in 2019 (NFPA Emmitsburg, 2020).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3