Multidimensional machine learning algorithms to learn liquid velocity inside a cylindrical bubble column reactor

Author:

Babanezhad Meisam,Marjani Azam,Shirazian Saeed

Abstract

AbstractFor understanding the complex behavior of fluids in a multiphase chemical bubble column reactor, a combination of the computational fluid dynamic (CFD) method and the adaptive network-based fuzzy inference system (ANFIS) method is used to predict bubble flow inside a reactor based on the function of column height. In this study, the Euler–Euler model is employed as a CFD method. In the Eulerian method, continuity and momentum governing equations are mathematically computed for each phase, while the equations are connected together by source terms. After calculating the flow pattern and turbulence flow in the reactor, all data sets are used to prepare a fully artificial method for further prediction. This algorithm contains different learning dimensions such as learning in different directions of reactor or large amount of input parameters and data set representing “big data”. The ANFIS method was evaluated in three steps by using one, two, and three inputs in each one to predict the liquid velocity in the x-direction (Ux). The x, y, and z coordinates of the location of the node of the liquid were considered as the inputs. Different percentages of data and various iterations and membership functions were used for training in the ANFIS method. The ANFIS method showed the best prediction using three inputs. This combination also shows the ability of computer science and computational methods in learning physical and chemical phenomena.

Funder

Government of the Russian Federation

Ministry of Science and Higher Education of the Russian Federation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3