Spatial ability and 3D model colour-coding affect anatomy performance: a cross-sectional and randomized trial

Author:

Koh Ming Yi,Tan Gerald Jit Shen,Mogali Sreenivasulu Reddy

Abstract

AbstractPhotorealistic 3D models (PR3DM) have great potential to supplement anatomy education; however, there is evidence that realism can increase cognitive load and negatively impact anatomy learning, particularly in students with decreased spatial ability. These differing viewpoints have resulted in difficulty in incorporating PR3DM when designing anatomy courses. To determine the effects of spatial ability on anatomy learning and reported intrinsic cognitive load using a drawing assessment, and of PR3DM versus an Artistic colour-coded 3D model (A3DM) on extraneous cognitive load and learning performance. First-year medical students participated in a cross-sectional (Study 1) and a double-blind randomised control trial (Study 2). Pre-tests analysed participants' knowledge of anatomy of the heart (Study 1, N = 50) and liver (Study 2, N = 46). In Study 1, subjects were first divided equally using a mental rotations test (MRT) into low and high spatial ability groups. Participants memorised a 2D-labeled heart valve diagram and sketched it rotated 180°, before self-reporting their intrinsic cognitive load (ICL). For Study 2, participants studied a liver PR3DM or its corresponding A3DM with texture-homogenisation, followed by a liver anatomy post-test, and reported extraneous cognitive load (ECL). All participants reported no prior anatomy experience. Participants with low spatial ability (N = 25) had significantly lower heart drawing scores (p = 0.001) than those with high spatial ability (N = 25), despite no significant differences in reported ICL (p = 0.110). Males had significantly higher MRT scores than females (p = 0.011). Participants who studied the liver A3DM (N = 22) had significantly higher post-test scores than those who studied the liver PR3DM (N = 24) (p = 0.042), despite no significant differences in reported ECL (p = 0.720). This investigation demonstrated that increased spatial ability and colour-coding of 3D models are associated with improved anatomy performance without significant increase in cognitive load. The findings are important and provide useful insight into the influence of spatial ability and photorealistic and artistic 3D models on anatomy education, and their applicability to instructional and assessment design in anatomy.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3