Effects of biochar-based materials on nickel adsorption and bioavailability in soil

Author:

Gao Weichun,He Wei,Zhang Jun,Chen Yifei,Zhang Zhaoxin,Yang Yuxiao,He Zhenjia

Abstract

AbstractThe potential for toxic elements to contaminate soil has been extensively studied. Therefore, the development of cost-effective methods and materials to prevent toxic element residues in the soil from entering the food chain is of great significance. Industrial and agricultural wastes such as wood vinegar (WV), sodium humate (NaHA) and biochar (BC) were used as raw materials in this study. HA was obtained by acidizing NaHA with WV and then loaded onto BC, which successfully prepared a highly efficient modification agent for nickel-contaminated soil, namely biochar-humic acid material (BC-HA). The characteristics and parameters of BC-HA were obtained by FTIR, SEM, EDS, BET and XPS. The chemisorption of Ni(II) ions by BC-HA conforms to the quasi-second-order kinetic model. Ni(II) ions are distributed on the heterogeneous surface of BC-HA by multimolecular layer adsorption, which accords with the Freundlich isotherm model. WV promotes better binding of HA and BC by introducing more active sites, thus increasing the adsorption capacity of Ni(II) ions on BC-HA. Ni(II) ions in soil are anchored to BC-HA by physical and chemical adsorption, electrostatic interaction, ion exchange and synergy.

Funder

The scientific research project of Shaanxi Provincial Land Engineering Construction Group Co., Ltd.

The Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Natural Resources of the People’s Republic of China

Xi’an science and technology plan project

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3