Association of complement C3 inhibitor pegcetacoplan with reduced photoreceptor degeneration beyond areas of geographic atrophy

Author:

Pfau Maximilian,Schmitz-Valckenberg Steffen,Ribeiro Ramiro,Safaei Reza,McKeown Alex,Fleckenstein Monika,Holz Frank G.

Abstract

AbstractPreservation of photoreceptors beyond areas of retinal pigment epithelium atrophy is a critical treatment goal in eyes with geographic atrophy (GA) to prevent vision loss. Thus, we assessed the association of treatment with the complement C3 inhibitor pegcetacoplan with optical coherence tomography (OCT)-based photoreceptor laminae thicknesses in this post hoc analysis of the FILLY trial (NCT02503332). Retinal layers in OCT were segmented using a deep-learning-based pipeline and extracted along evenly spaced contour-lines surrounding areas of GA. The primary outcome measure was change from baseline in (standardized) outer nuclear layer (ONL) thickness at the 5.16°-contour-line at month 12. Participants treated with pegcetacoplan monthly had a thicker ONL along the 5.16° contour-line compared to the pooled sham arm (mean difference [95% CI] + 0.29 z-score units [0.16, 0.42], P < 0.001). The same was evident for eyes treated with pegcetacoplan every other month (+ 0.26 z-score units [0.13, 0.4], P < 0.001). Additionally, eyes treated with pegcetacoplan exhibited a thicker photoreceptor inner segment layer along the 5.16°-contour-line at month 12. These findings suggest that pegcetacoplan could slow GA progression and lead to reduced thinning of photoreceptor layers beyond the GA boundary. Future trials in earlier disease stages, i.e., intermediate AMD, aiming to slow photoreceptor degeneration warrant consideration.

Funder

Apellis Pharmaceuticals, Waltham, Massachusetts, USA

Deutsche Forschungsgemeinschaft

National Eye Institute

Rheinische Friedrich-Wilhelms-Universität Bonn

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3