Hierarchical clustering of MS/MS spectra from the firefly metabolome identifies new lucibufagin compounds

Author:

Rawlinson Catherine,Jones Darcy,Rakshit Suman,Meka Shiv,Moffat Caroline S.,Moolhuijzen Paula

Abstract

AbstractMetabolite identification is the greatest challenge when analysing metabolomics data, as only a small proportion of metabolite reference standards exist. Clustering MS/MS spectra is a common method to identify similar compounds, however interrogation of underlying signature fragmentation patterns within clusters can be problematic. Previously published high-resolution LC-MS/MS data from the bioluminescent beetle (Photinus pyralis) provided an opportunity to mine new specialized metabolites in the lucibufagin class, compounds important for defense against predation. We aimed to 1) provide a workflow for hierarchically clustering MS/MS spectra for metabolomics data enabling users to cluster, visualise and easily interrogate the identification of underlying cluster ion profiles, and 2) use the workflow to identify key fragmentation patterns for lucibufagins in the hemolymph of P. pyralis. Features were aligned to their respective MS/MS spectra, then product ions were dynamically binned and resulting spectra were hierarchically clustered and grouped based on a cutoff distance threshold. Using the simplified visualization and the interrogation of cluster ion tables the number of lucibufagins was expanded from 17 to a total of 29.

Funder

Australian Government - Research Training Program

Grains Research and Development Corporation

Curtin University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3