Measurements and predictions of diffusible hydrogen escape and absorption in catholically charged 316LN austenitic stainless steel

Author:

Weihrauch Melissa,Patel Maulik,Patterson Eann A.

Abstract

AbstractHydrogen can have an impact on the service life of safety critical components, such as coolant pipes in nuclear reactors, where it may interact with other factors including irradiation. Hence, it is important to characterise such behaviour which in turn requires the capability to charge representative material specimens with hydrogen and to quantity the levels of hydrogen present. Hydrogen concentrations resulting from cathodic charging of 316LN stainless steel over short time periods (< 2 h) were estimated from hydrogen release rates obtained from potentiostatic discharge measurements and used to calibrate simulations based on Fick’s second law of diffusion in order to predict the hydrogen concentration after 24 h of charging. Leave-one-out cross-validation was used to establish confidence in results which were also validated using measurements from the melt extraction technique. The success of Fick’s second law for estimating escape rates showed that a majority of the absorbed hydrogen was diffusible rather than trapped. These results confirmed that the potentiostatic discharge technique can be used on materials with low diffusivity, and provide a new method through which hydrogen concentrations within a sample can be estimated after cathodic charging non-destructively without the need to remove samples from solution.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3