Identification of fractures in tight-oil reservoirs: a case study of the Da'anzhai member in the central Sichuan Basin, SW China

Author:

Tian Jie,Liu Hongqi,Wang Liang,Sima Liqiang,Liu Shiqiong,Liu Xiangjun

Abstract

AbstractThe Da'anzhai Member of the Jurassic Ziliujing formation in central Sichuan is a typical tight-oil reservoir with porosity and permeability less than 2% and 0.1 × 10–3 μm2, respectively. Fractures in this formation are well developed in micro- and nano-scale. However, the factors that control the fracture distribution are unclear. Additionally, the uncomprehensive and ineffective identification and evaluation of fractures in the early stage of tight-oil development makes it difficult to meet the requirements of tight-oil development. In our work, we used cores, thin sections, and a scanning electron microscope (SEM) to study the influence of the microscopic rock composition, including the shelly grains, calcite grains, and clastic grains, on the fracture development. We found that the microscopic composition of shelly grains and calcite grains separately control the development of inter-shelly fractures and shelly fractures, and intergranular fractures, and tectonic fractures. Except for a small number of dissolution fractures found in mudstone, the fractures are not well developed in the formations with clastic grains. According to the characteristics of the development degree of fracture and the resolution of the well-logs, the fractures are divided into large scale, small scale, and micro-scale. By a newly established level-by-level constraints method, we systematically identified the scale, occurrence, filling characteristics, and development degree of fractures in the Da'anzhai member by well-logs. Moreover, a quantitative model is also proposed for identifying the angles and development degree of fractures. The results show that the scale of fractures can be effectively identified by the shapes and values of resistivity logs; the occurrence, development, and filling characteristics of fractures can be semi-quantitatively evaluated by the relative amplitude difference between the matrix resistivity (Rb) and formation resistivity (RT). The results are consistent with the interpretation results by formation micro-resistivity imaging (FMI) log, which further demonstrates that the level-by-level constraint method by conventional well-logs can be used to systematically and effectively predict the fracture characteristics in tight-oil reservoirs.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3