Mycobacterium abscessus biofilms have viscoelastic properties which may contribute to their recalcitrance in chronic pulmonary infections

Author:

Gloag Erin S.,Wozniak Daniel J.,Stoodley Paul,Hall-Stoodley Luanne

Abstract

AbstractMycobacterium abscessus is emerging as a cause of recalcitrant chronic pulmonary infections, particularly in people with cystic fibrosis (CF). Biofilm formation has been implicated in the pathology of this organism, however the role of biofilm formation in infection is unclear. Two colony-variants of M. abscessus are routinely isolated from CF samples, smooth (MaSm) and rough (MaRg). These two variants display distinct colony morphologies due to the presence (MaSm) or absence (MaRg) of cell wall glycopeptidolipids (GPLs). We hypothesized that MaSm and MaRg variant biofilms might have different mechanical properties. To test this hypothesis, we performed uniaxial mechanical indentation, and shear rheometry on MaSm and MaRg colony-biofilms. We identified that MaRg biofilms were significantly stiffer than MaSm under a normal force, while MaSm biofilms were more pliant compared to MaRg, under both normal and shear forces. Furthermore, using theoretical indices of mucociliary and cough clearance, we identified that M. abscessus biofilms may be more resistant to mechanical forms of clearance from the lung, compared to another common pulmonary pathogen, Pseudomonas aeruginosa. Thus, the mechanical properties of M. abscessus biofilms may contribute to the persistent nature of pulmonary infections caused by this organism.

Funder

American Heart Association

Foundation for the National Institutes of Health

Cystic Fibrosis Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference54 articles.

1. Lam, J., Chan, R., Lam, K. & Costerton, J. W. Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect. Immun. 28, 546–556 (1980).

2. Singh, P. K. et al. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407, 762–764. https://doi.org/10.1038/35037627 (2000).

3. Park, I. K. & Olivier, K. N. Seminars in Respiratory and Critical Care Medicine 217 (NIH Public Access).

4. Furukawa, B. S. & Flume, P. A. Seminars in Respiratory and Critical Care Medicine 383–391 (Thieme Medical Publishers, New York, 2018).

5. Foundation, C. F. Cystic Fibrosis Foundation Patient Registry; 2018 Annual Data Report. (Bethesda, Maryland, 2019).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3