A rule-based energy management system for hybrid renewable energy sources with battery bank optimized by genetic algorithm optimization

Author:

Jamal Saif,Pasupuleti Jagadeesh,Ekanayake Janaka

Abstract

AbstractA Nanogrid (NG) model is described as a power distribution system that integrates Hybrid Renewable Energy Sources (HRESs) and Energy Storage Systems (ESSs) into the primary grid. However, this process is affected by several factors, like load variability, market pricing, and the intermittent nature of Wind Turbines (WTs) and Photovoltaic (PV) systems. Hence, other researchers in the past have used a few optimization-based processes to improve the development of Energy Management Systems (EMSs) and ESSs, which further enhanced the operational performance of NGs. It was seen that EMS acts as the distributed energy source in the NG setup and assists in power generation, usage, dissemination, and differential pricing. Hence this study employed the MATLAB Simulink software for modelling the grid-connected NG that included HRES; such as wind and PV; in addition to 3 Battery Storage Devices (BSDs) to design an effective EMS for the NG system and decrease its overall costs. For this purpose, a Rule-Based EMS (RB-EMS) that employs State Flow (SF) to guarantee a safe and reliable operating power flow to the NG has been developed. In addition to that, a Genetic Algorithm (GA)-based optimization system and Simulated Annealing optimization Algorithm (SAA) were proposed to determine an economical solution for decreasing the cost of the NG system depending on its operational constraints. Lastly, comparison about the cost between RB-EMS, GA and SAA has been presented. According to the simulation results, the proposed GA displayed an economical performance since it could achieve a 40% cost saving whereas the SAA system showed a 19.3% cost saving compared to the RB-EMS. It can be concluded from the findings that the GA-based optimization technique was very cost-effective displays many important features, like rapid convergence, simple design, and very few controlling factors.

Funder

Universiti Tenaga Nasional, Malaysia

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3