Deep ultraviolet fluorescence microscopy of three-dimensional structures in the mouse brain

Author:

Kasaragod Deepa Kamath,Aizawa Hidenori

Abstract

AbstractThree-dimensional (3D) imaging at cellular resolution improves our understanding of the brain architecture and is crucial for structural and functional integration as well as for the understanding of normal and pathological conditions in the brain. We developed a wide-field fluorescent microscope for 3D imaging of the brain structures using deep ultraviolet (DUV) light. This microscope allowed fluorescence imaging with optical sectioning due to the large absorption at the surface of the tissue and hence low tissue penetration of DUV light. Multiple channels of fluorophore signals were detected using single or a combination of dyes emitting fluorescence in the visible range of spectrum upon DUV excitation. Combination of this DUV microscope with microcontroller-based motorized stage enabled wide-field imaging of a coronal section of the cerebral hemisphere in mouse for deciphering cytoarchitecture of each substructure in detail. We extended this by integrating vibrating microtome which allowed serial block-face imaging of the brain structure such as the habenula in mouse. Acquired images were with resolution high enough for quantification of the cell numbers and density in the mouse habenula. Upon block-face imaging of the tissues covering entire extent of the cerebral hemisphere of the mouse brain, acquired data were registered and segmented for quantification of cell number in each brain regions. Results in the current analysis indicated that this novel microscope could be a convenient tool for large-scale 3D analysis of the brain in mice.

Funder

Japan Society for the Promotion of Science

Hiroshima University Female Researcher International Joint Research Grant

HIRAKU Consortium Start-up Grant

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3