Author:
Ramírez-Ramírez F.,Flores-Olmedo E.,Báez G.,Sadurní E.,Méndez-Sánchez R. A.
Abstract
AbstractSolid state physics deals with systems composed of atoms with strongly bound electrons. The tunneling probability of each electron is determined by interactions that typically extend to neighboring sites, as their corresponding wave amplitudes decay rapidly away from an isolated atomic core. This kind of description is essential in condensed-matter physics, and it rules the electronic transport properties of metals, insulators and many other solid-state systems. The corresponding phenomenology is well captured by tight-binding models, where the electronic band structure emerges from atomic orbitals of isolated atoms plus their coupling to neighboring sites in a crystal. In this work, a mechanical system that emulates dynamically a quantum tightly bound electron is built. This is done by connecting mechanical resonators via locally periodic aluminum bars acting as couplers. When the frequency of a particular resonator lies within the frequency gap of a coupler, the vibrational wave amplitude imitates a bound electron orbital. The localization of the wave at the resonator site and its exponential decay along the coupler are experimentally verified. The quantum dynamical tight-binding model and frequency measurements in mechanical structures show an excellent agreement. Some applications in atomic and condensed matter physics are suggested.
Publisher
Springer Science and Business Media LLC
Reference37 articles.
1. Kittel, C. Introduction to Solid State Physics (Wiley, 2005).
2. Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Hold, Reinhart & Winston, 1976).
3. Goringe, C. M., Bowler, D. R. & Hernández, E. Tight-binding modelling of materials. Rep. Prog. Phys. 60, 1447–1512 (1997).
4. Neto, A. H. C., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).
5. Naumis, G. G., Barraza-Lopez, S., Oliva-Leyva, M. & Terrones, H. Electronic and optical properties of strained graphene and other strained 2D materials: a review. Rep. Prog. Phys. 80, 1–62 (2017).
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献