Human plasma protein corona decreases the toxicity of pillar-layer metal organic framework

Author:

Jafari Samira,Izadi Zhila,Alaei Loghman,Jaymand Mehdi,Samadian Hadi,Kashani Vali ollah,Derakhshankhah Hossein,Hayati Payam,Noori Foad,Mansouri Kamran,Moakedi Faezeh,Janczak Jan,Soltanian Fard Mohammad Jaafar,Fayaz bakhsh Nozar

Abstract

AbstractThis scenario was designed to investigate the protein corona pattern on the pillar-layer surface of a Cu-based metal–organic framework (MOF) in human plasma. The [Cu(L)(L/)].1.3DMA (MOF-1) {L = 4, 4/-bipyridine and L/ = 5-aminoisophthalic acid}, was synthesized through the sonochemical irradiation approach as well as characterized by various techniques like scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray powder diffraction and single-crystal X-ray diffraction. The space group was determined to be an orthorhombic space group (Pbam) by single-crystal X-ray diffraction. Single-crystal X-ray analyses on MOF-1 showed that Cu+2 ion was 6-coordinated. Besides, to study and clarify interactions between MOFs and biological milieu, human whole blood plasma was selected as a model. Fluorescence spectroscopy and SDS-PAGE techniques were employed to explore quantitative and qualitative in situ characterization of protein corona as well. Furthermore, cell viability in a cancerous cell lines was evaluated by MTT assay in the presence and absence of the corona. The results from SDS-PAGE illustrated that the most adsorbed quantity among plasma proteins belongs to fibrinogen (α, β and γ chains), and this protein showed the maximum frequency on the MOF-1s surface, so the possible interactions of MOF-1s with fibrinogen also studied using fluorescence spectroscopy and corresponding data were plotted. According to the obtained data from MTT assay, these structures have concentration-dependent toxicity. In brief, based on the obtained data in the current study, the designed MOF can be introduced as a new desirable carrier for drug/gen delivery after further prerequisite assessments.

Funder

Kermanshah University of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3