The phase of plasticity-induced neurochemical changes of high-frequency repetitive transcranial magnetic stimulation are different from visual perceptual learning

Author:

Lin Shang-Hua N.,Lien Yun R.,Shibata Kazuhisa,Sasaki Yuka,Watanabe Takeo,Lin Ching-Po,Chang Li-Hung

Abstract

AbstractNumerous studies have found that repetitive transcranial magnetic stimulation (rTMS) modulates plasticity. rTMS has often been used to change neural networks underlying learning, often under the assumption that the mechanism of rTMS-induced plasticity should be highly similar to that associated with learning. The presence of visual perceptual learning (VPL) reveals the plasticity of early visual systems, which is formed through multiple phases. Hence, we tested how high-frequency (HF) rTMS and VPL modulate the effect of visual plasticity by investigating neurometabolic changes in early visual areas. We employed an excitatory-to-inhibitory (E/I) ratio, which refers to glutamate concentration divided by GABA+ concentration, as an index of the degree of plasticity. We compared neurotransmitter concentration changes after applying HF rTMS to the visual cortex with those after training in a visual task, in otherwise identical procedures. Both the time courses of the E/I ratios and neurotransmitter contributions to the E/I ratio significantly differed between HF rTMS and training conditions. The peak E/I ratio occurred 3.5 h after HF rTMS with decreased GABA+, whereas the peak E/I ratio occurred 0.5 h after visual training with increased glutamate. Furthermore, HF rTMS temporally decreased the thresholds for detecting phosphene and perceiving low-contrast stimuli, indicating increased visual plasticity. These results suggest that plasticity in early visual areas induced by HF rTMS is not as involved in the early phase of development of VPL that occurs during and immediately after training.

Funder

JSPS KAKENHI

Ministry of Science and Technology, Taiwan

Veterans General Hospitals and University System of Taiwan Joint Research Program

University System of Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3