Abstract
Abstract
Selective attention plays a prominent role in prioritizing information in working memory (WM), improving performance for attended representations. However, it remains unclear whether unattended WM representations suffer from information loss. Here we tested the hypothesis that within WM, selectively attending to an item and stopping storing other items are independent mechanisms. We recorded EEG while participants performed a WM recall task in which the item most likely to be tested was cued retrospectively during retention. By manipulating retro-cue reliability (i.e., the ratio of valid to invalid cue trials), we varied the incentive to retain non-cued items. Storage and selective attention in WM were measured during the retention interval by contralateral delay activity (CDA) and contralateral alpha power suppression, respectively. Soon after highly reliable cues, the cued item was attended, and non-cued items suffered information loss. However, for less reliable cues, initially the cued item was attended, but unattended items were kept in WM. Later during the delay, previously unattended items suffered information loss despite now attention being reallocated to their locations, presumably to strengthen their weakening traces. These results show that storage and attention in WM are distinct processes that can behave differently depending on the relative importance of representations.
Publisher
Springer Science and Business Media LLC
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献