Cortical inhibitory but not excitatory synaptic transmission and circuit refinement are altered after the deletion of NMDA receptors during early development

Author:

Deng Rongkang,Chang Minzi,Kao Joseph P. Y.,Kanold Patrick O.ORCID

Abstract

AbstractNeurons in the cerebral cortex form excitatory and inhibitory circuits with specific laminar locations. The mechanisms underlying the development of these spatially specific circuits is not fully understood. To test if postsynaptic N-methyl-D-aspartate (NMDA) receptors on excitatory neurons are required for the development of specific circuits to these neurons, we genetically ablated NMDA receptors from a subset of excitatory neurons in the temporal association cortex (TeA) through in utero electroporation and assessed the intracortical circuits connecting to L5 neurons through in vitro whole-cell patch clamp recordings coupled with laser-scanning photostimulation (LSPS). In NMDAR knockout neurons, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated connections were largely intact. In contrast both LSPS and mini-IPSC recordings revealed that γ-aminobutyric acid type A (GABAA) receptor-mediated connections were impaired in NMDAR knockout neurons. These results suggest that postsynaptic NMDA receptors are important for the development of GABAergic circuits.

Funder

National Institute of General Medical Sciences

National Institute on Deafness and Other Communication Disorders

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3