Continuous-time robust frequency regulation in isolated microgrids with decentralized fixed structure μ-synthesis and comparative analysis with PID and FOPID controllers

Author:

Mohammed Abdallah,Kadry Ahmed,Abo-Adma Maged,Samahy Adel El,Elazab Rasha

Abstract

AbstractIsolated microgrids, which are crucial for supplying electricity to remote areas using local energy sources, have garnered increased attention due to the escalating integration of renewable energy sources in modern microgrids. This integration poses technical challenges, notably in mitigating frequency deviations caused by non-dispatchable renewables, which threaten overall system stability. Therefore, this paper introduces decentralized fixed structure robust μ-synthesis controllers for continuous-time applications, surpassing the limitations of conventional centralized controllers. Motivated by the increasing importance of microgrids, this work contributes to the vital area of frequency regulation. The research challenge involves developing a controller that not only addresses the identified technical issues but also surpasses the limitations of conventional centralized controllers. In contrast to their centralized counterparts, the proposed decentralized controllers prove more reliable, demonstrating enhanced disturbance rejection capabilities amidst substantial uncertainties, represented through normalized co-prime factorization. The proposed controllers are designed using the D-K iteration technique, incorporating performance weight filters on control actions to maintain low control sensitivity and ensure specific frequency band operation for each sub-system. Importantly, the design considers unstructured uncertainty up to 40%, addressing real-world uncertainties comprehensively. Rigorous robust stability and performance tests underscore the controller's superiority, demonstrating its robustness against elevated uncertainty levels. Robust stability is verified for all controllers, with the proposed controller showing robust stability against up to 171% of the modeled uncertainty. Notably, the controller boasts a fixed structure with lower order compared to other H-infinity controllers, enhancing its practical implementation. Comparative analyses against Coronavirus Herd Immunity Optimizer tuned Proportional-Integral-Derivative (CHIO-PID) controller and CHIO tuned Fractional-Order Proportional-Integral-Derivative (CHIO-FOPID) controller further validate the superior performance of the proposed solution, offering a significant step towards ensuring the stability and reliability of microgrid systems in the face of evolving energy landscapes.

Funder

Helwan University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3