Evaluating regression and probabilistic methods for ECG-based electrolyte prediction

Author:

von Bachmann Philipp,Gedon Daniel,Gustafsson Fredrik K.,Ribeiro Antônio H.,Lampa Erik,Gustafsson Stefan,Sundström Johan,Schön Thomas B.

Abstract

AbstractImbalances in electrolyte concentrations can have severe consequences, but accurate and accessible measurements could improve patient outcomes. The current measurement method based on blood tests is accurate but invasive and time-consuming and is often unavailable for example in remote locations or an ambulance setting. In this paper, we explore the use of deep neural networks (DNNs) for regression tasks to accurately predict continuous electrolyte concentrations from electrocardiograms (ECGs), a quick and widely adopted tool. We analyze our DNN models on a novel dataset of over 290,000 ECGs across four major electrolytes and compare their performance with traditional machine learning models. For improved understanding, we also study the full spectrum from continuous predictions to a binary classification of extreme concentration levels. Finally, we investigate probabilistic regression approaches and explore uncertainty estimates for enhanced clinical usefulness. Our results show that DNNs outperform traditional models but model performance varies significantly across different electrolytes. While discretization leads to good classification performance, it does not address the original problem of continuous concentration level prediction. Probabilistic regression has practical potential, but our uncertainty estimates are not perfectly calibrated. Our study is therefore a first step towards developing an accurate and reliable ECG-based method for electrolyte concentration level prediction—a method with high potential impact within multiple clinical scenarios.

Funder

Swedish Research Council

Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by Knut and Alice Wallenberg Foundation

The Kjell and Marta Beijer Foundation

Anders Wiklöf

Uppsala University

HORIZON EUROPE European Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3