Surrogate vascular input function measurements from the superior sagittal sinus are repeatable and provide tissue-validated kinetic parameters in brain DCE-MRI

Author:

Lewis Daniel,Zhu Xiaoping,Coope David J.,Zhao Sha,King Andrew T.,Cootes Timothy,Jackson Alan,Li Ka-loh

Abstract

AbstractAccurate vascular input function (VIF) derivation is essential in brain dynamic contrast-enhanced (DCE) MRI. The optimum site for VIF estimation is, however, debated. This study sought to compare VIFs extracted from the internal carotid artery (ICA) and its branches with an arrival-corrected vascular output function (VOF) derived from the superior sagittal sinus (VOFSSS). DCE-MRI datasets from sixty-six patients with different brain tumours were retrospectively analysed and plasma gadolinium-based contrast agent (GBCA) concentration-time curves used to extract VOF/VIFs from the SSS, the ICA, and the middle cerebral artery. Semi-quantitative parameters across each first-pass VOF/VIF were compared and the relationship between these parameters and GBCA dose was evaluated. Through a test–retest study in 12 patients, the repeatability of each semiquantitative VOF/VIF parameter was evaluated; and through comparison with histopathological data the accuracy of kinetic parameter estimates derived using each VOF/VIF and the extended Tofts model was also assessed. VOFSSS provided a superior surrogate global input function compared to arteries, with greater contrast-to-noise (p < 0.001), higher peak (p < 0.001, repeated-measures ANOVA), and a greater sensitivity to interindividual plasma GBCA concentration. The repeatability of VOFSSS derived semi-quantitative parameters was good to excellent (ICC = 0.717–0.888) outperforming arterial based approaches. In contrast to arterial VIFs, kinetic parameters obtained using a SSS derived VOF permitted detection of intertumoural differences in both microvessel surface area and cell density within resected tissue specimens. These results support the usage of an arrival-corrected VOFSSS as a surrogate vascular input function for kinetic parameter mapping in brain DCE-MRI.

Funder

Cancer Research UK

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3