Glomerular endothelial cell heterogeneity in Alport syndrome

Author:

Soloyan Hasmik,Thornton Matthew,Villani Valentina,Khatchadourian Patrick,Cravedi Paolo,Angeletti Andrea,Grubbs Brendan,De Filippo Roger,Perin Laura,Sedrakyan Sargis

Abstract

AbstractGlomerular endothelial cells (GEC) are a crucial component of the glomerular physiology and their damage contributes to the progression of chronic kidney diseases. How GEC affect the pathology of Alport syndrome (AS) however, is unclear. We characterized GEC from wild type (WT) and col4α5 knockout AS mice, a hereditary disorder characterized by progressive renal failure. We used endothelial-specific Tek-tdTomato reporter mice to isolate GEC by FACS and performed transcriptome analysis on them from WT and AS mice, followed by in vitro functional assays and confocal and intravital imaging studies. Biopsies from patients with chronic kidney disease, including AS were compared with our findings in mice. We identified two subpopulations of GEC (dimtdT and brighttdT) based on the fluorescence intensity of the TektdT signal. In AS mice, the brighttdT cell number increased and presented differential expression of endothelial markers compared to WT. RNA-seq analysis revealed differences in the immune and metabolic signaling pathways. In AS mice, dimtdT and brighttdT cells had different expression profiles of matrix-associated genes (Svep1, Itgβ6), metabolic activity (Apom, Pgc1α) and immune modulation (Apelin, Icam1) compared to WT mice. We confirmed a new pro-inflammatory role of Apelin in AS mice and in cultured human GEC. Gene modulations were identified comparable to the biopsies from patients with AS and focal segmental glomerulosclerosis, possibly indicating that the same mechanisms apply to humans. We report the presence of two GEC subpopulations that differ between AS and healthy mice or humans. This finding paves the way to a better understanding of the pathogenic role of GEC in AS progression and could lead to novel therapeutic targets.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3