Integrating core physics and machine learning for improved parameter prediction in boiling water reactor operations

Author:

Oktavian M. R.,Nistor J.,Gruenwald J. T.,Xu Y.

Abstract

AbstractThis study introduces a novel method for enhancing Boiling Water Reactor (BWR) operation simulations by integrating machine learning (ML) models with conventional simulation techniques. The ML model is trained to identify and correct errors in low-fidelity simulation outputs, traditionally derived from core physics computations. These corrections aim to align the low-fidelity results closely with high-fidelity data. Precise predictions of nuclear reactor parameters like core eigenvalue and power distribution are crucial for efficient fuel management and adherence to technical specifications. Current high-fidelity transport calculations, while accurate, are impractical for real-time predictions due to extensive computational demands. Our approach, therefore, utilizes the standard two-step simulation process-assembly-level lattice physics calculations followed by whole-core nodal diffusion computations-to generate initial results, which are then refined using the ML-based error correction model. The methodology focuses on improving simulation accuracy in regular BWR operations rather than developing a universal ML predictor for reactor physics. By training an advanced neural network model on the difference in high-fidelity and low-fidelity simulations, the model can reduce the nodal power error from low-fidelity simulations to around 1% on average and the core eigenvalue down to under 100 pcm. This result is under the condition of the normal variations of control rod pattern and core flow rate changes in standard BWR operations used in the training and evaluation of the machine learning model. This work suggests a promising approach for achieving more accurate, computationally feasible simulation solutions in nuclear reactor operation and management.

Funder

Blue Wave AI Labs

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3