Responses of AG1 and AG2 QTL introgression lines and seed pre-treatment on growth and physiological processes during anaerobic germination of rice under flooding

Author:

Mondal Satyen,Khan M. Iqbal R.,Entila Frederickson,Dixit Shalabh,Sta. Cruz Pompe C.,Panna Ali M.,Pittendrigh Barry,Septiningsih Endang M.,Ismail Abdelbagi M.

Abstract

AbstractRice seeds germinating in flooded soils encounter hypoxia or even anoxia leading to poor seed germination and crop establishment. Introgression of AG1 and AG2 QTLs associated with tolerance of flooding during germination, together with seed pre-treatment via hydro-priming or presoaking can enhance germination and seedling growth in anaerobic soils. This study assessed the performance of elite lines incorporating AG1, AG2 and their combination when directly seeded in flooded soils using dry seeds. The QTLs were in the background of two popular varieties PSB Rc82 and Ciherang-Sub1, evaluated along with the donors Kho Hlan On (AG1) and Ma-Zhan Red (AG2) and recipient parents PSB Rc82 and Ciherang-Sub1. In one set of experiments conducted in the greenhouse, seedling emergence, growth, and carbohydrate mobilization from seeds were assessed. Metabolites associated with reactive oxygen species (ROS) scavenging including malondialdehyde (MDA) as a measure of lipid peroxidation, ascorbate, total phenolic concentration (TPC), and activities of ROS scavenging enzymes were quantified in seeds germinating under control (saturated) and flooded (10 cm) soils. In another set of experiments conducted in a natural field with 3–5 cm flooding depths, control and pretreated seeds of Ciherang-Sub1 introgression lines and checks were used. Flooding reduced seedling emergence of all genotypes, though emergence of AG1 + AG2 introgression lines was greater than the other AG lines. Soluble sugars increased, while starch concentration decreased gradually under flooding especially in the tolerant checks and in AG1 + AG2 introgression lines. Less lipid peroxidation and higher α-amylase activity, higher ascorbate (RAsA) and TPC were observed in the tolerant checks and in the AG1 + AG2 introgression lines. Lipid peroxidation correlated negatively with ascorbate, TPC, and with ROS scavengers. Seed hydro-priming or pre-soaking increased emergence by 7–10% over that of dry seeds. Introgression of AG2 and AG1 + AG2 QTLs with seed pretreatment showed 101–153% higher emergence over dry seeds of intolerant genotypes in the field. Lines carrying AG1 + AG2 QTLs showed higher α-amylase activity, leading to rapid starch degradation and increase in soluble sugars, ascorbate, and TPC, together leading to higher germination and seedling growth in flooded soils. Seed hydro-priming or pre-soaking for 24 h also improved traits associated with flooding tolerance. Combining tolerance with seed management could therefore, improve crop establishment in flooded soils and encourage large-scale adoption of direct seeded rice system.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3