Comparisons of deep learning algorithms for diagnosing bacterial keratitis via external eye photographs

Author:

Kuo Ming-Tse,Hsu Benny Wei-Yun,Lin Yi-Sheng,Fang Po-Chiung,Yu Hun-Ju,Chen Alexander,Yu Meng-Shan,Tseng Vincent S.

Abstract

AbstractBacterial keratitis (BK), a painful and fulminant bacterial infection of the cornea, is the most common type of vision-threatening infectious keratitis (IK). A rapid clinical diagnosis by an ophthalmologist may often help prevent BK patients from progression to corneal melting or even perforation, but many rural areas cannot afford an ophthalmologist. Thanks to the rapid development of deep learning (DL) algorithms, artificial intelligence via image could provide an immediate screening and recommendation for patients with red and painful eyes. Therefore, this study aims to elucidate the potentials of different DL algorithms for diagnosing BK via external eye photos. External eye photos of clinically suspected IK were consecutively collected from five referral centers. The candidate DL frameworks, including ResNet50, ResNeXt50, DenseNet121, SE-ResNet50, EfficientNets B0, B1, B2, and B3, were trained to recognize BK from the photo toward the target with the greatest area under the receiver operating characteristic curve (AUROC). Via five-cross validation, EfficientNet B3 showed the most excellent average AUROC, in which the average percentage of sensitivity, specificity, positive predictive value, and negative predictive value was 74, 64, 77, and 61. There was no statistical difference in diagnostic accuracy and AUROC between any two of these DL frameworks. The diagnostic accuracy of these models (ranged from 69 to 72%) is comparable to that of the ophthalmologist (66% to 74%). Therefore, all these models are promising tools for diagnosing BK in first-line medical care units without ophthalmologists.

Funder

Chang Gung Research Proposal

the Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3