Author:
Daxer Christoph,Huang Jyh-Jaan Steven,Weginger Stefan,Hilbe Michael,Strasser Michael,Moernaut Jasper
Abstract
AbstractSeismic hazard maps are crucial for earthquake mitigation and mostly rely on probabilistic seismic hazard analysis (PSHA). However, the practise and value of PSHA are under debate because objective testing procedures for seismic hazard maps are scarce. We present a lacustrine turbidite record revealing 44 earthquakes over the last ~ 14 ka and use it to test seismic hazard curves in southern Austria. We derive local seismic intensities for paleo-earthquakes by applying scaling relationships between the sedimentary imprint and seismic intensity of well-documented historical earthquakes. The last ~ 2.8 ka of the record agree with a Poissonian recurrence behaviour and therefore a constant hazard rate, which is the modelling choice for standard PSHA. The lacustrine data are consistent with the intensity-frequency relationship of the local seismic hazard curve, confirming the current PSHA approach for this part of Austria. On longer timescales, distinct phases of enhanced regional seismicity occurred, indicating a potential increase of seismic hazard after large earthquakes—a factor hitherto disregarded in the PSHA of the Eastern Alps. Our new method forms an independent procedure to test hazard maps in any setting where suitable lake systems are available.
Funder
Austrian Science Fund
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献