The screening for anticoagulant rodenticide gene VKORC1 polymorphism in the rat Rattus norvegicus, Rattus tanezumi and Rattus losea in Hong Kong

Author:

Huang Elaine Y. Y.,Law Sean T. S.,Nong Wenyan,Yip Ho Yin,Uea-Anuwong Theethawat,Magouras Ioannis,Hui Jerome H. L.

Abstract

AbstractAnticoagulants are a major component of rodenticides used worldwide, which function by effectively blocking the vitamin K cycle in rodents. The rat Vitamin K epoxide Reductase Complex (VKORC) subunit 1 is the enzyme responsible for recycling vitamin K, and five substitution mutations (Tyr139Cys, Tyr139Ser, Tyr139Phe and Leu128Gln and Leu120Gln) located in the VKORC1 could result in resistance to anticoagulant rodenticides. This study carried out a VKORC1-based survey to estimate the anticoagulant rodenticide resistance in three Rattus species (R. losea, R. norvegicus, and R. tanezumi) collected in Hong Kong. A total of 202 rats captured in Hong Kong between 2017 and 2021 were analysed. Sequencing of molecular marker cytochrome c oxidase subunit 1 (COX1) was carried out to assist the species identification, and the identities of 52 lesser ricefield rats (R. losea), 81 common rats (R. norvegicus) and 69 house rats (R. tanezumi) were confirmed. Three VKORC1 exons were amplified from individuals by PCR followed by Sanger sequencing. A total of 47 R. tanezumi (68.1%) contained Tyr139Cys mutation in VKORC1 gene, and half of them were homozygous. None of the collected R. losea and R. norvegicus were detected with the five known substitutions leading to anticoagulant rodenticides resistance, and previously undescribed missense mutations were revealed in each species. Whole genome sequencing was further carried out on some individuals, and single nucleotide polymorphisms (SNPs) were also identified in the introns. This is the first study investigating the situation of anticoagulant rodenticide resistance in the rats collected in Hong Kong. Given that the efficacy of rodenticides is crucial for effective rodent management, regular genetic testing as well as population genomic analyses will be required to both monitor the situation and understand the adaption of different rat haplotypes for integrated pest management. Susceptibility tests for individual rodenticides should also be conducted regularly to assess their effectiveness on local species.

Funder

Research Grants Council, University Grants Committee

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bromadiolone;Encyclopedia of Toxicology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3