Author:
Kawasaki Daiki,Oishi Ryoutarou,Kobayashi Nao,Mizuta Tatsumi,Sueyoshi Kenji,Hisamoto Hideaki,Endo Tatsuro
Abstract
AbstractAn ionic liquid-based thin (~ 1 µm) colorimetric membrane (CM) is a key nano-tool for optical ion sensing, and a two-dimensional photonic crystal slab (PCS) is an important nano-platform for ultimate light control. For highly sensitive optical ion sensing, this report proposes a hybrid of these two optical nano-elements, namely, a CM/PCS hybrid. This structure was successfully fabricated by a simple and rapid process using nanoimprinting and spin-coating, which enabled control of the CM thickness. Optical characterization of the hybrid structure was conducted by optical measurement and simulation of the reflection spectrum, indicating that the light confined in the holes of the PCS was drastically absorbed by the CM when the spectrum overlapped with the absorption spectrum of the CM. This optical property obtained by the hybridization of CM and PCS enabled drastic improvement in the absorption sensitivity in Ca ion sensing, by ca. 78 times compared to that without PCS. Experimental and simulated investigation of the relation between the CM thickness and absorption sensitivity enhancement suggested that the controlled light in the PCS enhanced the absorption cross-section of the dye molecules within the CM based on the enhanced local density of states. This highly sensitive optical ion sensor is expected to be applied for micro-scale bio-analysis like cell-dynamics based on reflectometric Ca ion detection.
Funder
Japan Science and Technology Agency
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献