Highly sensitive optical ion sensor with ionic liquid-based colorimetric membrane/photonic crystal hybrid structure

Author:

Kawasaki Daiki,Oishi Ryoutarou,Kobayashi Nao,Mizuta Tatsumi,Sueyoshi Kenji,Hisamoto Hideaki,Endo Tatsuro

Abstract

AbstractAn ionic liquid-based thin (~ 1 µm) colorimetric membrane (CM) is a key nano-tool for optical ion sensing, and a two-dimensional photonic crystal slab (PCS) is an important nano-platform for ultimate light control. For highly sensitive optical ion sensing, this report proposes a hybrid of these two optical nano-elements, namely, a CM/PCS hybrid. This structure was successfully fabricated by a simple and rapid process using nanoimprinting and spin-coating, which enabled control of the CM thickness. Optical characterization of the hybrid structure was conducted by optical measurement and simulation of the reflection spectrum, indicating that the light confined in the holes of the PCS was drastically absorbed by the CM when the spectrum overlapped with the absorption spectrum of the CM. This optical property obtained by the hybridization of CM and PCS enabled drastic improvement in the absorption sensitivity in Ca ion sensing, by ca. 78 times compared to that without PCS. Experimental and simulated investigation of the relation between the CM thickness and absorption sensitivity enhancement suggested that the controlled light in the PCS enhanced the absorption cross-section of the dye molecules within the CM based on the enhanced local density of states. This highly sensitive optical ion sensor is expected to be applied for micro-scale bio-analysis like cell-dynamics based on reflectometric Ca ion detection.

Funder

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3