Long-term agro-management strategies shape soil bacterial community structure in dryland wheat systems

Author:

Singh Shikha,Singh Surendra,Lukas Scott B.,Machado Stephen,Nouri Amin,Calderon Francisco,Rieke Elizabeth R.,Cappellazzi Shannon B.

Abstract

AbstractSoil microbes play a crucial role in soil organic matter decomposition and nutrient cycling and are influenced by management practices. Therefore, quantifying the impacts of various agricultural management practices on soil microbiomes and their activity is crucial for making informed management decisions. This study aimed to assess the impact of various management systems on soil bacterial abundance and diversity, soil enzyme activities and carbon mineralization potential in wheat-based systems. To accomplish this, soil samples from 0 to 15 cm depth were collected from ongoing long-term field trials in eastern Oregon region under wheat (Triticum aestivum L.)-fallow (WF), WF with different tillage (WT), wheat-pea (Pisum sativum L.) (WP), WF under different crop residue management (CR) and natural undisturbed/unmanaged grassland pasture (GP). These trials consisted of an array of treatments like tillage intensities, nitrogen rates, organic amendments, and seasonal residue burning. This study was a part of the Soil Health Institute’s North American Project to Evaluate Soil Health measurements (NAPESHM). Bacterial community structure was determined using amplicon sequencing of the V4 region of 16SrRNA genes and followed the protocols of the Earth Microbiome Project. In addition, extracellular enzyme activities, and carbon mineralization potential (1d-CO2) were measured. Among different trials, 1d-CO2 in WT, WP, and CR studies averaged 53%, 51% and 87% lower than GP systems, respectively. Enzyme activities were significantly greater in GP compared to the other managements and followed similar trend as respiration. We observed higher evenness in GP and higher richness in spring residue burning treatment of CR study. Our results indicated that species evenness is perhaps a better indicator of soil health in comparison to other indices in dryland wheat systems.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3