Dual-branch hybrid network for lesion segmentation in gastric cancer images

Author:

He Dongzhi,Zhang Yuanyu,Huang Hui,Si Yuhang,Wang Zhiqiang,Li Yunqi

Abstract

AbstractThe effective segmentation of the lesion region in gastric cancer images can assist physicians in diagnosing and reducing the probability of misdiagnosis. The U-Net has been proven to provide segmentation results comparable to specialists in medical image segmentation because of its ability to extract high-level semantic information. However, it has limitations in obtaining global contextual information. On the other hand, the Transformer excels at modeling explicit long-range relations but cannot capture low-level detail information. Hence, this paper proposes a Dual-Branch Hybrid Network based on the fusion Transformer and U-Net to overcome both limitations. We propose the Deep Feature Aggregation Decoder (DFA) by aggregating only the in-depth features to obtain salient lesion features for both branches and reduce the complexity of the model. Besides, we design a Feature Fusion (FF) module utilizing the multi-modal fusion mechanisms to interact with independent features of various modalities and the linear Hadamard product to fuse the feature information extracted from both branches. Finally, the Transformer loss, the U-Net loss, and the fused loss are compared to the ground truth label for joint training. Experimental results show that our proposed method has an IOU of 81.3%, a Dice coefficient of 89.5%, and an Accuracy of 94.0%. These metrics demonstrate that our model outperforms the existing models in obtaining high-quality segmentation results, which has excellent potential for clinical analysis and diagnosis. The code and implementation details are available at Github, https://github.com/ZYY01/DBH-Net/.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3