Superconductivity in In-doped AgSnBiTe3 with possible band inversion

Author:

Mitobe Tsubasa,Hoshi Kazuhisa,Kasem Md. Riad,Kiyama Ryosuke,Usui Hidetomo,Yamashita Aichi,Higashinaka Ryuji,Matsuda Tatsuma D.,Aoki Yuji,Katase Takayoshi,Goto Yosuke,Mizuguchi Yoshikazu

Abstract

AbstractWe investigated the chemical pressure effects on structural and electronic properties of SnTe-based material using partial substitution of Sn by Ag0.5Bi0.5, which results in lattice shrinkage. For Sn1−2x(AgBi)xTe, single-phase polycrystalline samples were obtained with a wide range of x. On the basis of band calculations, we confirmed that the Sn1−2x(AgBi)xTe system is basically possessing band inversion and topologically preserved electronic states. To explore new superconducting phases related to the topological electronic states, we investigated the In-doping effects on structural and superconducting properties for x = 0.33 (AgSnBiTe3). For (AgSnBi)(1−y)/3InyTe, single-phase polycrystalline samples were obtained for y = 0–0.5 by high-pressure synthesis. Superconductivity was observed for y = 0.2–0.5. For y = 0.4, the transition temperature estimated from zero-resistivity state was 2.4 K, and the specific heat investigation confirmed the emergence of bulk superconductivity. Because the presence of band inversion was theoretically predicted, and the parameters obtained from specific heat analyses were comparable to In-doped SnTe, we expect that the (AgSnBi)(1−y)/3InyTe and other (Ag, In, Sn, Bi)Te phases are candidate systems for studying topological superconductivity.

Funder

Japan Society for the Promotion of Science

Advanced Research Program under the Human Resources Funds of Tokyo

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3