Complex shaped periodic corrugations for broadband Bull’s Eye antennas

Author:

Kampouridou Despoina,Feresidis Alexandros

Abstract

AbstractPeriodically corrugated metallic antennas have been developed in recent years from microwave to THz frequencies, due to their advantages of highly directive radiation patterns, low profile and ease of fabrication. However, the limited gain bandwidth of such antennas remains one of their inherent disadvantages. In terms of design, the majority of the existing implementations in literature utilize the standard rectangular shaped corrugated unit cell. In this paper, we propose novel complex shaped corrugated unit cells that produce a broadband performance when assembled in a periodic configuration. Two broadband prototypes are presented at the Ku frequency band that are formed of hybrid shaped corrugations. The first prototype of six periodic rings achieves, for the first time, a flat gain simulated response with a maximum value of 15.7 dBi, 1-dB gain bandwidth of 16.4%, and an extended 3-dB gain bandwidth of 19.64%. The second novel prototype of five rings achieves an enhanced 3-dB gain bandwidth of 15.2% and maximum gain of 18.1 dBi.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Single-pair Equatorial Dipole-Dipole Underground Imaging Antenna Capacitance Minimization Using Grey Wolf Optimization Algorithm;2023 IEEE 15th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM);2023-11-19

2. All-Metal THz Leaky-Wave Antenna with Suppressed Open Stopband;2023 17th European Conference on Antennas and Propagation (EuCAP);2023-03-26

3. Terahertz ultra-wideband antenna with tunable band-notch creation using resonant/non-resonant graphene loop;Optical Engineering;2022-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3