Oxidative and carbonyl stress induced AMD and Codonopsis lanceolata ameliorates AMD via controlling oxidative and carbonyl stress

Author:

Lee Soon-Young,Cho Yeon-Kyoung,Bae Chun-Sik,Kim Gyeyeop,Lee Min-Jae,Cho Seung-Sik,Jeon In-Chul,Park Dae-Hun

Abstract

AbstractAge-related macular degeneration (AMD) is one of the leading causes of blindness. AMD is currently incurable; the best solution is to prevent its occurrence. To develop drugs for AMD, it is crucial to have a model system that mimics the symptoms and mechanisms in patients. It is most important to develop safer and more effective anti-AMD drug. In this study, the dose of A2E and the intensity of blue light were evaluated to establish an appropriate atrophic in vitro model of AMD and anti-AMD effect and therapeutic mechanism of Codonopsis lanceolata. The experimental groups included a control group an AMD group treated with A2E and blue light, a lutein group treated with 25 μM lutein after AMD induction, and three groups treated with different doses of C. lanceolata (10, 20, and 50 μg/mL) after AMD induction. Intrinsic apoptotic pathway (Bcl-2 family), anti-oxidative system (Keap1/Nrf2/HO-1 antioxidant response element), and anti-carbonyl effect (4-hydroxynonenal [4-HNE]) were evaluated using immunofluorescence, MTT, TUNEL, FACS, and western blotting analyses. A2E accumulation in the cytoplasm of ARPE-19 cells depending on the dose of A2E. Cell viability of ARPE-19 cells according to the dose of A2E and/or blue light intensity. The population of apoptotic or necrotic cells increased based on the A2E dose and blue light intensity. Codonopsis lanceolata dose-dependently prevented cell death which was induced by A2E and blue light. The antiapoptotic effect of that was caused by activating Keap1/Nrf2/HO-1 pathway, suppressing 4-HNE, and modulating Bcl-2 family proteins like increase of antiapoptotic proteins such as Bcl-2 and Bcl-XL and decrease of proapoptotic protein such as Bim. Based on these findings, 30 μM A2E and 20 mW/cm2 blue light on adult retinal pigment epithelium-19 cells was an appropriate condition for AMD model and C. lanceolata shows promise as an anti-AMD agent.

Funder

the National Research Foundation of Korea (NRF) grant funded by the Korea government

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3