Value of radiomics model based on enhanced computed tomography in risk grade prediction of gastrointestinal stromal tumors

Author:

Chu Hairui,Pang Peipei,He Jian,Zhang Desheng,Zhang Mei,Qiu Yingying,Li Xiaofen,Lei Pinggui,Fan Bing,Xu Rongchun

Abstract

AbstractTo explore the application of computed tomography (CT)-enhanced radiomics for the risk-grade prediction of gastrointestinal stromal tumors (GIST). GIST patients (n = 292) confirmed by surgery or endoscopic pathology during June 2013–2019 were reviewed and categorized into low-grade (very low to low risk) and high-grade (medium to high risk) groups. The tumor region of interest (ROI) was depicted layer by layer on each patient’s enhanced CT venous phase images using the ITK-SNAP. The texture features were extracted using the Analysis Kit (AK) and then randomly divided into the training (n = 205) and test (n = 87) groups in a ratio of 7:3. After dimension reduction by the least absolute shrinkage and the selection operator algorithm (LASSO), a prediction model was constructed using the logistic regression method. The clinical data of the two groups were statistically analyzed, and the multivariate regression prediction model was constructed by using statistically significant features. The ROC curve was applied to evaluate the prediction performance of the proposed model. A radiomics-prediction model was constructed based on 10 characteristic parameters selected from 396 quantitative feature parameters extracted from the CT images. The proposed radiomics model exhibited effective risk-grade prediction of GIST. For the training group, the area under curve (AUC), sensitivity, specificity, and accuracy rate were 0.793 (95%CI: 0.733–0.854), 83.3%, 64.3%, and 72.7%, respectively; the corresponding values for the test group were 0.791 (95%CI: 0.696–0.886), 84.2%, 69.3%, and 75.9%, respectively. There were significant differences in age (t value: − 3.133, P = 0.008), maximum tumor diameter (Z value: − 12.163, P = 0.000) and tumor morphology (χ2 value:10.409, P = 0.001) between the two groups, which were used to establish a clinical prediction model. The area under the receiver operating characteristic curve of the clinical model was 0.718 (95%CI: 0.659–0.776). The proposed CT-enhanced radiomics model exhibited better accuracy and effective performance than the clinical model, which can be used for the assessment of risk grades of GIST.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3