Author:
Tian Ying,Guo Ning,Wang Wen-Yi,Geng Wenming,Jing Li-Chao,Wang Tao,Yuan Xiao-Tong,Zhu Zeru,Ma Yicheng,Geng Hong-Zhang
Abstract
AbstractGraphene oxide (GO), reduced graphene oxide (rGO) and carbon nanotubes (CNTs) have their own advantages in electrical, optical, thermal and mechanical properties. An effective combination of these materials is ideal for preparing transparent conductive films to replace the traditional indium tin oxide films. At present, the preparation conditions of rGO are usually harsh and some of them have toxic effects. In this paper, an SnCl2/ethanol solution was selected as the reductant because it requires mild reaction conditions and no harmful products are produced. The whole process of rGO preparation was convenient, fast and environmentally friendly. Then, SEM, XPS, Raman, and XRD were used to verify the high reduction efficiency. CNTs were introduced to improve the film conductive property. The transmittance and sheet resistance were the criteria used to choose the reduction time and the content ratios of GO/CNT. Thanks to the post-treatment of nitric acid, not only the by-product (SnO2) and dispersant in the film are removed, but also the doping effect occurs, which are all conducive to reducing the sheet resistances of films. Ultimately, by combining rGO, GO and CNTs, transparent conductive films with a bilayer and three-dimensional structure were prepared, and they exhibited high transmittance and low sheet resistance (58.8 Ω/sq. at 83.45 T%, 47.5 Ω/sq. at 79.07 T%), with corresponding $${{\sigma_{dc} } \mathord{\left/ {\vphantom {{\sigma_{dc} } {\sigma_{opt} }}} \right. \kern-\nulldelimiterspace} {\sigma_{opt} }}$$
σ
dc
/
σ
opt
values of 33.8 and 31.8, respectively. In addition, GO and rGO can modify the surface and reduce the film surface roughness. The transparent conductive films are expected to be used in photoelectric devices.
Funder
the Natural Science Foundation of Tianjin China
Publisher
Springer Science and Business Media LLC
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献