Monocrystalline Silicon Carbide Disk Resonators on Phononic Crystals with Ultra-Low Dissipation Bulk Acoustic Wave Modes

Author:

Hamelin BenoitORCID,Yang Jeremy,Daruwalla Anosh,Wen HaoranORCID,Ayazi Farrokh

Abstract

AbstractMicromechanical resonators with ultra-low energy dissipation are essential for a wide range of applications, such as navigation in GPS-denied environments. Routinely implemented in silicon (Si), their energy dissipation often reaches the quantum limits of Si, which can be surpassed by using materials with lower intrinsic loss. This paper explores dissipation limits in 4H monocrystalline silicon carbide-on-insulator (4H-SiCOI) mechanical resonators fabricated at wafer-level, and reports on ultra-high quality-factors (Q) in gyroscopic-mode disk resonators. The SiC disk resonators are anchored upon an acoustically-engineered Si substrate containing a phononic crystal which suppresses anchor loss and promises QANCHOR near 1 Billion by design. Operating deep in the adiabatic regime, the bulk acoustic wave (BAW) modes of solid SiC disks are mostly free of bulk thermoelastic damping. Capacitively-transduced SiC BAW disk resonators consistently display gyroscopic m = 3 modes with Q-factors above 2 Million (M) at 6.29 MHz, limited by surface TED due to microscale roughness along the disk sidewalls. The surface TED limit is revealed by optical measurements on a SiC disk, with nanoscale smooth sidewalls, exhibiting Q = 18 M at 5.3 MHz, corresponding to f · Q = 9 · 1013 Hz, a 5-fold improvement over the Akhiezer limit of Si. Our results pave the path for integrated SiC resonators and resonant gyroscopes with Q-factors beyond the reach of Si.

Funder

United States Department of Defense | Defense Advanced Research Projects Agency

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3