Simulation of transvascular transport of nanoparticles in tumor microenvironments for drug delivery applications

Author:

Shabbir Fariha,Mujeeb Amenah Abdul,Jawed Syed Faraz,Khan Ali Haider,Shakeel Choudhary Sobhan

Abstract

AbstractNanomedicine is a promising approach for tumor therapy but penetration is challenged by complex tumor microenvironments. The purpose of this study is to design nanoparticles and analyze their transport in two abnormal microenvironments through a 2-D simulation. Employing a Computational Fluid Dynamics (CFD) approach, tumor vascular-interstitial models were initially simulated, and the impact of nanoparticles on the velocity profile and pressure gradient within the tumor microenvironment was observed. Through meticulous mesh analysis, it was determined that optimal outcomes were achieved using a quadrilateral meshing method for pancreatic tumor and a quad/tri meshing method for hepatic tumor. Results showed an increase in vessel diameter correlated with elevated blood flow velocity, reaching a maximum of 1.40 × 10^−3 m/s with an expanding cell gap. The simulation results for pressure distribution show that as vessel diameter increases, the velocity of nanoparticles in blood increases and decreases the pressure of blood. Intriguingly, distinct fluid flow patterns in pancreatic and hepatic tumors, emphasize how microenvironmental differences, specifically cell pore size, profoundly impact therapeutic agent transport, with implications for drug delivery strategies in cancer therapy. These simulation-based insights enable researchers to anticipate nanofluid behavior in realistic settings. Future work, incorporating immune cells, will enhance the understanding of nanoparticle efficiency in cancer therapy.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3