Analysis of influencing factors of phenanthrene adsorption by different soils in Guanzhong basin based on response surface method

Author:

Tian Hua,Zhang Qing,Tian Xue,Xie Zu-feng,Pu Fang,Wang Qian-ji

Abstract

AbstractAdsorption desorption is an important behavior affecting the migration of phenanthrene in soil. In this study, three typical soils of loess, silts and silty sand in Guanzhong Basin, Shaanxi Province, China were used as adsorbents. Batch equilibrium experiments were carried out to study the adsorption desorption kinetics and isotherm of phenanthrene in different soils. Response surface method (RSM) was used to study the effects of temperature, pH, phenanthrene concentration and organic matter content on soil adsorption of phenanthrene. The results showed that after adsorption, the outline of soil particles became more blurred and the degree of cementation increased. The kinetic adsorption of phenanthrene by soil conforms to the quasi second-order kinetic model, and the adsorption desorption isotherm is nonlinear and conforms to the Freundlich model. Due to the difference of soil properties, the adsorption amount of phenanthrene by soil is loess > silty sand > silts. The thermodynamic results show that the adsorption of phenanthrene by soil is spontaneous and endothermic, and the desorption is spontaneous and exothermic. Through RSM, the interaction between phenanthrene concentration and soil organic matter in Loess and silts is significant, and the interaction between temperature and soil organic matter in silty sand is significant. Among the four factors affecting the adsorption rate of loess, silts and silty sand, soil organic matter is the most significant. The theoretical optimum adsorption rates of loess, silts and silty sand are 98.89%, 96.59% and 93.37% respectively.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3